MIMO|SRG|Ericsson|c-band : Guest Post: Satellite IoT’s Crucial Role in Driving Environmental Sustainability 

Guest Post: Satellite IoT’s Crucial Role in Driving Environmental Sustainability 

In the face of unprecedented global environmental challenges, the Internet of Things (IoT) has the potential to be the catalyst in driving sustainable development. Satellite IoT, a means of communicating with very remote assets and sensors, holds tremendous potential in monitoring, managing, and mitigating environmental issues.  

Alastair MacLeod, CEO of remote connectivity provider Ground Control, explores the crucial role of Satellite IoT in driving environmental sustainability now and in future. 

The World Economic Forum’s IoT Guidelines for Sustainability report states that 84% of IoT deployments are addressing or have the potential to address the UN’s Sustainable Development Goals. Satellite IoT’s capacity to collect and transmit data, even in remote locations, holds immense potential for reshaping global sustainability initiatives. Through intelligent communication between devices and using real-time data, Satellite IoT helps to address environmental issues and promote sustainable practices. 

But how and where? Satellite IoT and Sustainability in Practice 

One area where we are seeing Satellite IoT driving sustainability forward is in wildlife conservation and environmental monitoring. This offers a highly efficient and impactful method for gathering and transmitting essential data. A common scenario sees a form of LPWAN used for networking multiple sensors across a wide area. The data is aggregated in a gateway, and optimised for transmission over satellite. Because it has no reliance on cellular infrastructure, LoRaWAN is increasingly paired with satellite to build a fully wireless communication network. Characterised by their capability for long-range connectivity with minimal power consumption, these are particularly well-suited for tasks involving the transmission of modest data volumes across expansive distances with minimal infrastructure requirements.

Satellite IoT, therefore, is crucial in areas lacking traditional cellular connectivity. Unlike traditional cellular networks, which often encounter limitations in delivering coverage to remote and challenging terrains like dense forests, mountains or deserts — habitats where numerous endangered species thrive — LoRaWAN excels, with the ability to span hundreds of square kilometres using just a single base station, or gateway, connected to satellites for data backhaul. This data is gold dust for environmental agencies and policymakers. 

The concept of Satellite IoT using data to empower environmental conservation efforts can be seen in the “Digitalization of forest” which encompasses the integration of cutting-edge technologies into forest environments. The initiative aims to improve existing methods in monitoring, data acquisition, and research and development. For instance, satellite-enabled sensors can be deployed in forests to detect signs of deforestation, monitor wildlife movement, and measure carbon dioxide levels. This data helps in making informed decisions for conservation efforts, preventing illegal activities, and preserving ecosystems. These sophisticated systems are designed for intelligent sensing, monitoring, and analysis, specifically targeting applications like forest fire detection, illegal logging, and poaching, and enabled by satellite IoT.  

Satellite IoT connectivity also contributes significantly to smart agriculture and precision farming, optimising resource usage and reducing environmental impact. Farmers now harness IoT sensors to oversee environmental factors, manage livestock, and enhance decision-making across all facets of agriculture, transforming it into a “smart” endeavour. Given the expansive nature of farm operations, LoRaWAN paired with a satellite enabled gateway works well to facilitate efficient IoT solutions within the agricultural sector. Effectively networked IoT sensors can monitor soil moisture levels, assess crop health, and provide farmers with actionable insights even if the farm is in an extremely remote location.  

Precision agriculture, a farming management strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability, holds the potential to significantly reduce the environmental impact of the agricultural industry, currently responsible for a quarter of global greenhouse gas emissions. Adopting precision agriculture technologies can increase crop production, reduce resource usage, and have positive economic impacts. The Association of Equipment Manufacturers estimates current precision agriculture usage at 10-60%, predicting that a 90% adoption rate could lead to substantial benefits. However, slow adoption is attributed to challenges, with connectivity being a prominent issue, especially in remote farm areas. 

For example, Synnefa, which facilitates remote farming for smallholders in rural Kenya, provides cost-effective, reliable, and efficient data for farmers to make educated decisions about when to irrigate or fertilise their crops; or to use Synnefa’s smart greenhouses and drip kits which will automatically fulfil these tasks based on sensor data. The gains are spectacular: Farmers are saving water by over 50%, reducing fertiliser application rates by 41%, and increasing production by 30% when compared to yields prior to the use of their smart sensors. 

The thorny climate change issue 

Looking at climate change, satellite IoT contributes to climate change mitigation by providing invaluable data for monitoring and understanding environmental changes. Remote sensors deliver accurate real-time data to help us understand how we affect the environment. These sensors can track changes in sea levels, measure atmospheric carbon concentrations, and monitor deforestation patterns, and their data can be securely, reliably and cost-effectively delivered over satellite. This data is crucial for climate scientists and policymakers in formulating evidence-based strategies to mitigate the impacts of climate change and adapt to evolving environmental conditions. 

Finally, the incorporation of Satellite IoT also plays a role in disaster management, enhancing early warning systems and boosting response capabilities. Satellite-enabled sensors can monitor various natural disasters like hurricanes, floods, and wildfires, supplying real-time data to emergency responders. This facilitates prompt evacuation, optimal resource allocation, and efficient post-disaster recovery efforts, helping to reduce the environmental and human impact of such events. Satellite-empowered technology means that disaster management crews can comprehend their available resources, enabling them to coordinate actions effectively. Asset trackers fixed to vehicles and equipment can provide precise GPS coordinates at varying frequencies, depending on the disaster’s scale, offering a tailored level of insight for swift and efficient relief efforts. 

What impact can we anticipate 3GPP standards having on satellite IoT connectivity?  

Historically, satellite IoT applications came with a premium price due to the high costs associated with building, launching, and maintaining satellite networks. However, recent trends, such as lower launch costs and the deployment of smaller satellites in Low Earth Orbit (LEO), have contributed to a gradual reduction in these expenses. 

The introduction of standards-based satellites and modems will further accelerate price reductions. While proprietary modems offer device compatibility with specific satellite networks, standards-based devices using the 3GPP standard allow interoperability, enabling users to switch between satellite and terrestrial operators without hardware updates. The potential benefits include lower airtime and modem costs, driven by increased competition and production volumes. 

However, there are challenges for new satellite network operators, including spectrum allocation issues. Licensed Mobile Satellite Services (MSS) spectrum is held by established operators, and new entrants must explore alternatives like unlicensed UHF/VHF, repurposing cellular spectrum with terrestrial networks, or renting spectrum from existing operators. We anticipate a two-tier market in the near future, with low-cost, low-capability options emerging alongside higher-cost, high-capability networks serving mission-critical applications. 

As technology continues to evolve, Satellite IoT is poised to play an increasingly crucial role in encouraging a harmonious relationship between human activities and the environment. By leveraging the capabilities of Satellite IoT, we can create a more sustainable future. 




To reserve your ticket please fill out the registration form